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1 Introduction

Diverse development experiences across nations and over time have received a great deal of at-

tention in the literature on economic growth. For example, Lucas (1993) asks why Philippine

and South Korea, two countries with very similar starting points in 1960, have had very di�er-

ent growth rates since. At the same time, South Korea has had larger growth volatility than

Philippine (World Development Indicators). After two decades, one may now ask why some

countries like South Korea or Japan, once known as growth miracles, have had mediocre or

sluggish growth more recently,and why some countries like Singapore have forged ahead. One

may also ask why the emerging economies have switched to a rapid growth path and sustained

the momentum in recent decades. One of the frameworks in which economists try to explain

diverse growth experiences is the Uzawa-Lucas model.

The dynamics at steady states, or interchangeably balanced growth paths (BGPs), have long

been studied in various versions or extensions of the Uzawa (1965) model with constant returns

to scale in production for goods and in education for human capital accumulation. Among them,

Bond et al. (1996) �nd the existence, uniqueness, and saddle-path stability (determinacy1) of

the BGP, with an extension of the Uzawa model to include physical capital in the education

technology, as in Mulligan and Sala-i-Martin (1993), Stokey and Rebelo (1995), and Azariadis

et al. (2013). Incorporating positive sector-speci�c externalities of both physical and human

capital in two sectors, Mino (2001) shows that indeterminacy could emerge at a unique steady

state even in cases with decreasing private returns to scale and constant social returns to scale.

Ladrón-de-Guevara et al. (1997, 1999) �nd multiple steady states with endogenous leisure.

Introducing leisure externalities, however, Azariadis et al. (2013) �nd a unique BGP.

To explore the mechanics of development, Lucas (1988) incorporates empirically plausible

spillovers of average human capital that generate increasing social returns in production in the

Uzawa model.2 The increasing returns to scale via human capital externalities give rise to rich

1To avoid the confusion with multiple BGPs, (local) determinacy or indeterminacy always refers to the tran-
sition paths converging to a single BGP in this paper.

2There is indeed supporting empirical evidence for such spillovers in the literature (e.g. Young, 1928; Basu
and Fernald, 1997; Harris and Lau, 1998; Moretti, 2004a, 2004b).
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dynamics in endogenous growth models: Benhabib and Perli (1994) �nd a unique BGP in the

Lucas model and multiple BGPs when incorporating endogenous labor. Also, strong enough

human capital externalities in excess of the role of physical capital in production (γ > β) and a

high enough elasticity of intertemporal substitution (a small σ) are su�cient for indeterminacy

or a local continuum of equilibrium paths at the BGP, yet a labor-leisure trade o� relaxes

the restriction on σ for indeterminacy. Setting an inverse relation between the intertemporal

elasticity of substitution and the share parameter of capital, Xie (1994) �nds a global continuum

of equilibrium paths converging to a unique BGP under the same condition γ > β. While an

indeterminate BGP or a continuum of transitional equilibrium paths helps to explain diverse

growth experiences in �nite time, multiple BGPs help to explain those in the long run.

However, it is questionable whether human capital spillovers driving increasing returns in

production are indeed more important than physical capital in production as required for in-

determinacy in the Lucas model (γ > β). Also, the Lucas-style models typically use e�ective

labor as the sole input in education with constant returns to scale. Yet, little attention has been

paid to such empirically plausible features of education as the physical capital input, returns

to scale, and human capital externalities in the Lucas-type models with increasing returns in

production via human capital spillovers. According to Bowen (1987) and Jones and Zimmer

(2001), physical investment plays a signi�cant role in the education sector. Borjas (1992, 1995),

among others, �nds empirical evidence for human capital externalities in education. Moreover,

Psacharopoulos (1994) and Trostel (2004) present empirical evidence for signi�cantly decreasing

private and/or social returns to scale, at least at high levels of education. Usually known as a

force for convergence and against sustainable growth, the decreasing returns to scale in educa-

tion cast doubt about the existence, indeterminacy and multiplicity of a sustainable balanced

growth path. Overall, such important considerations in education should a�ect the dynamic

properties of the equilibrium paths as far as the existence, indeterminacy and multiplicity of the

BGP are concerned.

The present paper tries to �ll in these gaps. We investigate the existence, indeterminacy,
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and multiplicity of BGPs in an extended Lucas model by incorporating several factors in the

education sector: physical capital inputs, human capital externalities, and decreasing returns

to scale. In doing so, we do not start with any strong restrictions on factor intensities or

externalities for our model. As in Mulligan and Sala-i-Martin (1993), we begin with relatively

general forms of technologies and identify the restrictions on the parameters for the existence of

balanced growth, viewing the Uzawa (1965) and the Lucas (1988) models as special cases.

The present model makes several contributions. First, with physical capital inputs in educa-

tion and increasing social returns in production, social returns to scale in education should be

decreasing for the existence of BGPs; indeterminate BGPs can arise for weaker human capital ex-

ternalities and the importance of human capital in education plays a great role in the possibility

of indeterminacy; and multiple BGPs may emerge with perhaps distinctive dynamic properties:

The high-growth BGP may be indeterminate and the low-growth BGP may be determinate but

not vice versa. In particular, our use of the empirically plausible decreasing returns to scale in

education strengthens the argument for indeterminacy and multiplicity of BGPs in this type of

model. The results help to explain why some countries could achieve extraordinary growth for a

few decades and why it is di�cult to avoid eventual growth slowdown as experienced in Japan.

The intuition for indeterminacy comes from human capital externalities for increasing returns

to scale in production as in the literature (e.g. Benhabib and Perli, 1994; Xie, 1994), and from the

more general education technologies in the present model. Starting from any equilibrium path,

another one may be justi�ed by saving more and allocating more resources into the education

sector, so long as the rate of return of capital increases su�ciently and as consumers have strong

enough willingness for intertemporal substitution. Stronger increasing returns in production via

human capital spillovers allow the rate of return of capital to increase more. Also, a higher

educational output elasticity of human capital in the present model enhances the e�ectiveness

of this intersectoral re-allocation. When physical investment plays a role in the education sector

in the present model, the complementarity between physical and human capital promotes the

e�ectiveness of this intersectoral re-allocation further, by allocating more physical capital into
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the education sector together with human capital. So indeterminacy in the present model could

occur for weaker human capital externalities than those in the literature mentioned above,

thereby easing the concern about whether the required strength of human capital externalities

for indeterminacy is empirically plausible.

The source for multiple BGPs in the present paper hinges on the balance between decreasing

private/social returns to scale in education and increasing social returns in production, both

via human capital externalities, given strong enough intertemporal substitution, rather than on

leisure in the literature. The decreasing return to scale in education tends to induce smaller

fractions of available resources for education, while the increasing returns in production via

human capital externalities tends to induce the opposite through equilibrium feedback e�ects.

Consequently, the low (high) growth BGP accompanies greater (smaller) shares of human and

physical capital used for production. Therefore, an economy at the low-growth BGP avoids

some loss from decreasing returns to scale in education but bene�ts less from increasing returns

to scale in production from human capital externalities than at the high-growth BGP. Given

that increasing returns to scale in production via human capital externalities are the source for

indeterminate BGPs, it is possible to have a pair of a determinate low-growth BGP and an

indeterminate high-growth BGP. Whereas it is impossible to have a pair of an indeterminate

low-growth BGP and a determinate high-growth BGP. Absent these additional factors in the

education sector, the BGP would be unique as in the literature mentioned above.

The rest of the paper is organized as follows: Section 2 introduces the model. Section 3

analyzes the equilibrium paths, and the existence and multiplicity of BGPs. Section 4 analyzes

the local determinacy/indeterminacy of the BGPs. The last section concludes the paper.

2 The model

The model extends that in Lucas (1988) to incorporate the physical capital input, human capital

externalities, and decreasing returns to scale in the education sector. Starting with initial stocks

of human and physical capital H(0) and K(0), the representative agent maximizes his utility
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derived from consumption C(t) over an in�nite horizon by the choice of the fractions of human

and physical capital (u(t), ν(t)) and the path of consumption:

max
C(t),u(t),ν(t)

ˆ ∞
0

C(t)1−σ − 1

1− σ
e−ρtdt, (1)

subject to the technologies for production and education, and the budget constraint (all time

subscripts omitted):

Y = A(νK)β(uH)1−βHγ
a , (2)

Ḣ = B[(1− ν)K]α[(1− u)H]ηHb(γ)
a ≡ X, (3)

Y = C + K̇, (4)

taking the average human capital Ha as given.

Here, 1/σ > 0 is the elasticity of intertemporal substitution, ρ > 0 is the rate of time

preference, β ∈ [0, 1] and α ∈ [0, 1] are the output elasticities of physical capital in production

and in education respectively, η ∈ [0, 1] is the output elasticity of human capital in education,

and γ ≥ 0 and b(γ) are the degrees of human capital externalities in production and education

respectively. The exact form of b(γ) will be pinned down in Section 3.1, where we discuss the

existence of balanced growth.

Some plausible assumptions on the parameters are given as follows. First, decreasing returns

to scale in the education sector are allowed according to the aforementioned empirical evidence:

Assumption 1: α+ η ≤ 1.

Second, physical capital plays a more important role in production than in education:

Assumption 2: 0 ≤ α < β.

Third, production is typically regarded as more physical capital intensive than education.

Namely, the contribution of human capital, relative to the contribution of physical capital, is

larger in education than in production:

Assumption 3: η > α1−β
β

(or η
α
> 1−β

β
).
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3 The equilibrium and balanced growth paths

The optimization problem in (1)-(4) is formulated in the current-value Hamiltonian:

H =
C1−σ − 1

1− σ
+ µ

[
A(νK)β(uH)1−βHγ

a − C
]

+ λB[(1− ν)K]α[(1− u)H]ηHb(γ)
a ,

where µ and λ are the Lagrangian multipliers. The �rst-order conditions are:

C : C−σ − µ = 0, (5)

K : µβY/K + λαX/K = ρµ− µ̇, (6)

H : µ(1− β)Y/H + ληX/H = ρλ− λ̇, (7)

ν : µβY/ν − λαX/(1− ν) = 0, (8)

u : µ(1− β)Y/u− ληX/(1− u) = 0, (9)

and the transition equations concerning the state variables in the Hamiltonian.

The transversality conditions are:

lim
t→∞

µe−ρtK = 0,

lim
t→∞

λe−ρtH = 0.

The representative agent treats Ha as exogenous. In equilibrium, however, Ha = H.

The �rst-order conditions can be simpli�ed into an autonomous system of di�erential equa-

tions concerning the control and state variables as follows. First, equations (8) and (9) imply

the expressions for λ/µ and µ/λ:

λ

µ
=

1− ν
ν

βY

αX
, (10)

µ

λ
=

u

1− u
ηX

(1− β)Y
. (11)
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Substituting them into (6) and (7) yields growth rates of the multipliers:

µ̇

µ
= ρ− 1

ν
βY/K, (12)

λ̇

λ
= ρ− 1

1− u
ηX/H. (13)

From (5) and (12), the growth rate of consumption is:

Ċ

C
=

1

σ

(
β

ν

Y

K
− ρ
)

=
1

σ

[
βA

(
uH

νK

)1−β
Hγ − ρ

]
. (14)

From (2) and (4), the growth rate of physical capital is:

K̇

K
=

Y

K
− C

K
= Aν

(
uH

νK

)1−β
Hγ − C

K
. (15)

From (3), the growth rate of human capital is:

Ḣ

H
≡ X

H
= B[(1− ν)K]α[(1− u)H]ηHb−1. (16)

The derivation of the growth rate of u, the fraction of human capital used in production,

takes several steps. First, di�erentiating (8) with respect to time yields:

µ̇

µ
+
Ẏ

Y
− ν̇

ν
=
λ̇

λ
+
Ẋ

X
+

ν̇

1− ν
. (17)

Next, multiplying equations (10) with (11) on both sides gives

ηβ

α(1− β)

1− v
ν

u

1− u
= 1, (18)

which implies

ν =
u

D + (1−D)u
, (19)

D ≡ α(1− β)

ηβ
.

From Assumption 3, 0 ≤ D < 1, which will be used frequently later. The unique and positive

relationship between ν and u in (19) comes from the complementarity between physical and
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human capital in production and in education. Notice that ν equals one when α = 0, which is

the case in the original Lucas model. Di�erentiating (18) with respect to time leads to

u̇

u
− ν̇

ν
=

ν̇

1− ν
− u̇

1− u
. (20)

Finally, using (2), (3), (12), (13) and (20) in (17) for substitution gives rise to

u̇

1− u
=

[
β − α

D + (1−D)u
+ 1− η − β

]−1 [
(β − α)

(
Y

K
− C

K

)

+(1− η − b− β + γ)
X

H
− 1

ν

βY

K
+

1

1− u
ηX

H

]
, (21)

where the �rst factor on the right-hand side is positive as shown below:

Q ≡ β − α
D + (1−D)u

+ 1− η − β

=
β − α+ (1− η − β)[D + (1−D)u]

D + (1−D)u

=
β(1−D)(1−u)−α[D+(1−D)u+1−D−(1−D)u]+(1−η)[D+(1−D)u]

D + (1−D)u

=
(β − α)(1−D)(1− u) + (1− η − α)[D + (1−D)u]

D + (1−D)u
> 0.

This factor will be used repeatedly.

The equilibrium paths of variables (C,H,K, u, ν) are determined by (14), (15), (16), (19)

and (21). We denote the right-hand sides of (14), (15), (16) and (21), for the growth rates of

consumption C, physical capital K, human capital H, and the fraction of human capital used in

production u, as Γ̃(K,H, u), ∆̃(C,K,H, u), Θ̃(K,H, u) and Ω̃(C,K,H, u) respectively. Then,

the equilibrium path can be written in a block of four di�erential equations:

Ċ = CΓ̃(K,H, u) (22)

K̇ = K∆̃(C,K,H, u) (23)

Ḣ = HΘ̃(K,H, u) (24)

u̇ = (1− u)Ω̃(C,K,H, u). (25)
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This autonomous system of di�erential equations allows us to determine the BGP more conve-

niently.

3.1 The existence of balanced growth paths

A balanced or steady state growth path (BGP) refers to the stage of an equilibrium path on

which the growth rates of Y , C, H, K and the fractions of human and physical capital used

in production (u and ν) become constant over time. From (15), human capital cannot share

the same growth rate with physical capital in the long run for γ > 0. On the BGP, output

Y , physical capital K, and consumption C all grow at the same constant rate, denoted by g∗.

However, human capital H grows at the rate (1− β)g∗/(1− β + γ), as in the Lucas model. We

apply this result into (16) and pin down the speci�c form of b(γ) linking the externality in the

education sector to the externality in the production sector for the existence of BGPs:

b(γ) = 1− η − α1− β + γ

1− β
. (26)

This yields non-increasing social returns to scale in the education sector, as α + η + b(γ) =

1 − αγ/(1− β) ≤ 1. Intuitively, should both sectors demonstrate increasing social returns to

scale, the agent's optimization problem in (1)-(4) would be confronted with explosive growth

and thus undermine the existence of BGPs.

As we start from a quite general form of production functions in both sectors, a wide range of

parameter possibilities are permitted, including both the Uzawa and the Lucas model as special

cases. The Uzawa model is the case in which γ = 0, α = 0, η = 1 and b(γ) = 0, while the Lucas

model is the case in which γ > 0, α = 0, η = 1 and b(γ) = 0. From (26), the sign of human

capital externalities in education may be positive or negative, depending on the private returns

to scale in education. For instance, b(γ) is positive as long as the private returns to scale are

su�ciently decreasing so that 1 − η − α(1 − β + γ)/(1 − β) > 0. If both sectors demonstrate

privately constant returns to scale (η = 1 − α), then b(γ) = −αγ/(1 − β) is non-positive and

our model belongs to the class of models described in Mulligan and Sala-i-Martin (1993) and

satis�es their necessary condition for endogenous growth. In fact, private and social returns to

9



scale in education could be both decreasing as found empirically in the literature mentioned

earlier.

3.2 The multiplicity of balanced growth paths

For analytical convenience of the dynamic system, we now simplify the system in (22)-(25) by

reducing one dimension. Let z ≡ Z/H1+ γ
1−β be the human-capital-adjusted value of the variable

Z, where Z = Y , K, or C. The system can be transformed as

k̇ = Aνβu1−βkβ − c− 1− β + γ

1− β
B(1− ν)α(1− u)ηk1+α, (27)

ċ = c

[
1

σ

(
βAνβ−1u1−βkβ−1 − ρ

)
− 1− β + γ

1− β
B(1− ν)α(1− u)ηkα

]
, (28)

u̇ = (1−u)Q−1
{

[(β−α)ν−β]A
( u
νk

)1−β
+(α−β)

c

k

+

[
1− η−b−β+γ+

η

1−u

]
B(1−ν)α(1− u)ηkα

}
, (29)

where ν and u have a one-for-one positive relationship in (19). On the BGP where k̇ = ċ = u̇ = 0,

one can use (27)-(29) to solve for c∗, k∗, u∗ and ν∗.

From (16) and (26), the balanced growth rate g can be expressed in terms of (k, u, v):

g ≡ Ẏ

Y
=

1− β + γ

1− β
Ḣ

H
=

1− β + γ

1− β
B(1− ν)α(1− u)ηkα.

From this growth equation, (19), and (27)-(29), the growth rate on the BGP, g∗, is determined

implicitly by

g1−η−α =
1− β + γ

1− β
B

[
α(1− β)

ηβ

]α [ η(1− β)

−γg + (1− β + γ)(σg + ρ)

]η+α
×

(
βA

σg + ρ

) α
1−β

. (30)

Here, the balanced growth rate is shared by physical capital K, output Y , and consumption

C, while human capital H grows at a lower rate (1 − β)g∗/(1 − β + γ) as long as γ > 0.

Substituting g∗ into (19) and (27)-(29), we solve the steady state values of the other variables
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as functions of g∗:

u∗ = 1− η(1− β)g∗

−γg∗ + (1− β + γ)(σg∗ + ρ)
, (31)

ν∗ = 1− (1− β)ηDg∗

−[γ + (1− β)η(1−D)]g∗ + (1− β + γ)(σg∗ + ρ)
, (32)

k∗ =

(
βA

σg∗ + ρ

) 1
1−β u∗

ν∗
, (33)

c∗ =
ν∗k∗

β
(σg∗ + ρ)− k∗g∗. (34)

Moreover, the transversality condition requires the balanced growth rate to satisfy:

σg∗ + ρ > g∗.

It can be veri�ed that this constraint is su�cient to ensure that the solution is interior, i.e.

C, K, H > 0 and 0 < ν, u < 1. It is now ready to explore the conditions for a unique BGP or

multiple BGPs.

Proposition 1. The BGP is unique if σ > γ/(1− β + γ) or if η = 1. Otherwise, multiple

BGPs are possible and constructed for σ ≤ γ/(1− β + γ) and η < 1. For the case that private

returns to scale are constant in education (α + η = 1), there are multiple BGPs if and only if

conditions (35)-(37) are met.

Proof. The proof is based on (30) that determines the balanced growth rate. The left-hand

side of (30) is strictly increasing and concave in g if 0 < α + η < 1; otherwise, it equals one if

α + η = 1. Whereas the right-hand side, denoted as R(g), is positive under the transversality

condition (σ − 1)g + ρ > 0. Then,

R′(g) = −(α+ η)R(g)

[
−γ + σ(1− β + γ)

−γg + (1− β + γ)(σg + ρ)

]
−R(g)

ασ

(1− β)(σg + ρ)
,
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which is negative for σ > γ/(1− β + γ) and may be positive or negative otherwise; and

R′′(g) = R(g)

{
(α+ η)[−γ + σ(1− β + γ)]2

[−γg + (1− β + γ)(σg + ρ)]2
+

ασ2

(1− β)(σg + ρ)2

}
+

R(g)

{
(α+ η)[−γ + σ(1− β + γ)]

[−γg + (1− β + γ)(σg + ρ)]
+

ασ

(1− β)(σg + ρ)

}2

> 0.

The balanced growth rate g∗ is unique when σ > γ/(1− β + γ), since then the right (left)

hand side of equation (30) is strictly decreasing (non-decreasing) with respect to g. Moreover,

if η = 1, and hence α = 0, as in Lucas (1988), Benhabib and Perli (1994), and Xie (1994), a

unique reduced-form solution arises from (30):

g =
(1− β + γ)(B − ρ)

σ(1− β + γ)− γ
.

From (26) , b(γ) = 0 (no externalities in education) in this case. Note that if γ → 0 then

g → (B − ρ)/σ.

If σ ≤ γ/(1 − β + γ) and 0 < η < 1, there are several cases in which multiple BGPs may

arise. In the �rst case with α = 0 and 0 < η < 1 (decreasing private returns to education),

the left-hand side of (30) is increasing and concave, while the right-hand side is increasing and

convex in g because now R′(g) > 0 for α = 0 and σ ≤ γ/(1− β + γ), and R′′(g) > 0. Also, the

left-hand side g1−η starts at the value zero and rises at an in�nite rate (1− η)g−η at g = 0 but

eventually becomes �at at higher values of g. Whereas, the right-hand side R(g) starts above

zero at g = 0 and rises at an increasing rate. So it is very likely to have multiple BGPs. See

Figure 1 for an example, based on the parametrization below the �gure. Both the balanced

growth rates in this �gure meet the transversality condition.

In the second case with α > 0 and α + η = 1, the left-hand side of (30) equals one, while

the right-hand side may �rst decline at low growth rates, since now the second term of R′(g)

is negative, but may eventually increase at high growth rates as in the �rst case, as shown in

Figure 2. As R′′(g) > 0, the necessary and su�cient conditions for multiple roots to (30) in this

case are:

(a). R(0) ≥ 1,
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(b). R′(0) < 0 and

(c). min
g
{R(g)} < 1.

Condition (a) and (b) require respectively

R(0) = B

[
α(1− β)

ηβ

]α η
ρ

(
βA

ρ

) α
1−β
≥ 1. (35)

σ >
γ(1− β)

(1 + α− β)(1− β + γ)
. (36)

The lower bound (on σ) for R′(0) < 0 is smaller than the upper bound, σ < γ/(1− β + γ), for

possible multiple BGPs. Last, R′(g) switches its sign from negative to positive at g such that

R′(g) = 0 where

g =
ρασ(1− β + γ)− ρ(1− β)[γ − σ(1− β + γ)]

σ(1− β + α)[γ − σ(1− β + γ)]
.

So condition (c) requires

R(g)=
1−β+γ

1− β
B

[
α(1−β)

ηβ

]α
(βA)

α
1−β

ηασ

γ−σ(1−β+γ)

(
1

σg+ρ

) 1−β+α
1−β

< 1. (37)

In the last case with α > 0 and α+η < 1, the left-hand side of (30) is increasing and concave

in the growth rate, while the right-hand side is (eventually) an increasing and convex function

because R′(g) > 0 for high enough values of g and R′′(g) > 0. So multiple BGPs are likely to

arise, as shown in Figure 3, where transversality holds as well.

The BGP is unique in the Uzawa (Lucas) model with (without) physical capital in education

and with constant private and social returns to scale in education. From the extensions of

the education technology, the present model makes a contribution to produce multiple BGPs

through decreasing returns to scale in education. The higher balanced growth rate is associated

with higher fractions of human and physical capital for education (low u∗ and low v∗) from (31)

and (32).

The reason for multiple BGPs hinges on the balance between decreasing private or social

returns in education and increasing social returns in production, given strong enough intertem-
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poral elasticities of substitution. The former (latter) tends to reduce (increase) the fractions of

various available resources for education. The implication for diverse growth experiences comple-

ments that from the indeterminacy of a unique BGP in the literature. While the indeterminacy

of a unique BGP permits various equilibrium paths in transition, multiple BGPs justify very

di�erent growth rates across similar countries (such as Korea and Philippine) not only in the

transition but also in the long run. They also justify very di�erent growth rates across long

periods of time for the same country (like Japan) in the absence of fundamental structural or

institutional changes.

There is no consensus in the literature on the value of the intertemporal elasticity of substi-

tution, a critical parameter for uniqueness versus multiplicity of BGPs (and determinacy versus

indeterminacy later). While small intertemporal elasticities of substitution (σ ≥ 1) are typically

used in the business cycle literature, there are empirical �ndings supporting elastic intertempo-

ral substitution in the range of σ = 0.5 to σ = 1. Such estimates are based on models with

human capital and education components in Keane and Wolpin (2001) and Imai and Keane

(2004), with saving and �nancial market behaviors in Mulligan (2002) and Vissing-Jorgensen

and Orazio (2003), and with variations in the capital income tax rates in Gruber (2006). Some

of these estimates are in an intergenerational framework. Notice that the Lucas model can also

be interpreted as an intergenerational model. We now move on to analyze stability properties

of BGPs.

4 Stability properties of balanced growth paths

To study the stability property of a BGP, we �rst calculate the Jacobian matrix of the dynamic

system in (27)-(29) on the BGP:

J =

 J11 J12 J13

J21 J22 J23

J31 J32 J33

 , (38)
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where

J11 =
∂k̇

∂k
= −(1 + α)g∗ + ν∗(σg∗ + ρ),

J12 =
∂k̇

∂c
= −1,

J13 =
∂k̇

∂u
=

(
η +

αν∗

u∗

)
k∗

1− u∗
g∗ +

(
1− β
β

+
Dν∗

u∗

)
ν∗

u∗
k∗(σg∗ + ρ),

J21 =
∂ċ

∂k
= − c

∗

k∗

[
αg∗ +

1− β
σ

(σg∗ + ρ)

]
,

J22 =
∂ċ

∂c
= 0,

J23 =
∂ċ

∂u
=

c∗

u∗(1− u∗)

[
(αν∗ + ηu∗)g∗ +

1− β
σ

(ν∗ − u∗)(σg∗ + ρ)

]
,

J31 =
∂u̇

∂k
= (1− u∗)Q−1 1

k∗

{
α

1− β
1− β + γ

(
α+

αγ

1− β
− β + γ

+
η

1− u∗

)
g∗ + (α− β)g∗ + [(β − α)ν∗ + 1− β](σg∗ + ρ)

}
,

J32 =
∂u̇

∂c
= −(1− u∗)Q−1β − α

k∗
,

J33 =
∂u̇

∂u
= (1− u∗)Q−1

{[(
β − αγ

1− β
− α− γ

)
1− β

1− β + γ

1

1− u∗

(
η +

αν∗

u∗

)

+
η

(1− u∗)2
1− β

1− β + γ

(
1− αν∗

u∗
− η
)]

g∗

+
(β − α)ν∗[(1− β)u∗ + βDν∗] + β(1− β)(Dν∗ − u∗)

βu∗2
(σg∗ + ρ)

}
,

in which D ∈ [0, 1) is given below (19) and Q > 0 is given below (21).

Adopting the conventional approach in the literature, we identify the signs of the eigenvalues

of the Jacobian matrix by calculating several characteristics: the determinant, the trace, and

the function B(J) which will be de�ned later. The determinant of the Jacobian matrix is

det(J) = J13J21J32 − J23J31 + J21J33 − J11J23J32. (39)

We de�ne θ ≡ (ρ, σ, A, B, γ, β, η, α, g∗) and θ ∈ Θ, where Θ ⊂ R5
++×(0, 1)2×[0, 1)×R++
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such that Assumptions 1-3 are all met and equation (30) is satis�ed. We have to include g∗

here, as we have already shown that it is not in general uniquely determined by the parameters

and multiple BGPs under the same parametrization may not share the same stability feature.

This space Θ can be separated into three mutually-exclusive subsets:

Θ1 ≡

{
θ ∈ Θ |Z ≡ −

(
1−α−η

σ

)
(1−β+γ)

(
σg∗+ρ

g∗

)2

+

[
γ

σ
−(1−β+γ)

(
α

1−β
+η+α

)]
σg∗ + ρ

g∗
+

αγ

1− β
< 0

}
,

Θ2 ≡ {θ ∈ Θ |Z > 0} and

Θ3 ≡ {θ ∈ Θ |Z = 0},

and the determinant can be signed in these subsets as shown in the Appendix:

Lemma 1. The sign of the determinant of the Jacobian matrix is given by

(i) det(J) < 0 if θ ∈ Θ1,

(ii) det(J) > 0 if θ ∈ Θ2,

(iii) det(J) = 0 if θ ∈ Θ3.

Hereafter, we will focus on the region Θ1
⋃

Θ2 only. The trace of the Jacobian matrix is

tr(J) = J11 + J33. (40)

Moreover, B(J) is de�ned as that in Benhabib and Perli (1994):

B(J) =

∣∣∣∣∣J11 −1

J21 0

∣∣∣∣∣+

∣∣∣∣∣ 0 J23

J32 J33

∣∣∣∣∣+

∣∣∣∣∣J11 J13

J31 J33

∣∣∣∣∣
= J21 − J23J32 + J11J33 − J13J31. (41)

We now present the stability of the BGP shown in the Appendix. We will not state the transver-

sality condition σg∗ + ρ > g∗ explicitly in the following propositions, though it has to hold.

Proposition 2. The BGP is determinate if and only if θ ∈ Θ1. And the following conditions
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are su�cient (but not necessary) for determinacy:

(i) σ ≥ 1 or else if

(ii) η ≤ 1− β + ασ

(1− σ)(1− β + γ)
− α.

The BGP is always determinate if the intertemporal substitution is inelastic enough (σ ≥ 1),

which is consistent with the literature. It implies that indeterminacy cannot emerge when σ

is relatively large. Intuitively, the less agents are willing to shift resources intertemporally, the

smaller the possibility of alternative converging paths to the BGP. Alternatively, if σ < 1, a low

enough output elasticity of human capital in education (η) is su�cient for a determinate BGP. It

implies that indeterminacy cannot emerge if η is too low because of decreasing private returns to

scale in education, a feature captured in the present model as opposed to the related literature

with η = 1. The intuition comes from the e�ectiveness of the intersectoral re-allocation of human

capital: A low output elasticity of human capital in education hinders this e�ectiveness, which is

necessary for rationalizing an alternative equilibrium path by accelerating/decelerating human

capital accumulation. We present the condition for indeterminacy and relegate the proof to the

Appendix.

Proposition 3. There exists a partition of Θ2 into two subsets ΘI
2 and ΘU

2 , with ΘI
2

⋂
ΘU

2 = ∅

and ΘI
2

⋃
ΘU

2 = Θ2, such that the BGP is indeterminate if θ ∈ ΘI
2, and there is no converging

path to the BGP (an unstable BGP) if θ ∈ ΘU
2 .

It is di�cult to identify the exact constraints for ΘI
2 and ΘU

2 in general, i.e. the necessary

and su�cient conditions for indeterminate and unstable BGPs. However, in some special cases,

we can �nd the su�cient conditions for an indeterminate BGP (i.e. a subset of ΘI
2). In the more

general case, we can only use numerical simulations. Thus, we present the results in three cases

separately: the case with α = 0 and η ≤ 1 to focus on the role of decreasing private returns

to scale in education; the case with η = 1− α to focus on the role of physical capital inputs in

education; and the case with α > 0 and η < 1− α.
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4.1 The case α = 0 and η ≤ 1

This case is the closest to the original Lucas model where physical capital does not play any role

in the education sector (η = 1). When η < 1, the private returns to scale are decreasing in the

education sector but the social returns to scale are constant, in the presence of human capital

externalities in education under the condition for balanced growth in (26):

α+ η +

(
1− η − α1− β + γ

1− β

)
︸ ︷︷ ︸

b(γ)

= 1 when α = 0.

Here, the di�erence between the private and social returns to scale comes from the positive

human capital externality in education b(γ) = 1 − η, according to (26). The necessary and

su�cient condition for determinacy in this case is given below (see the Appendix):

Proposition 4. The BGP is determinate if and only if

η < 1− g∗

ρ

(
γ

1− β + γ
− σ

)
.

This is a corollary of Proposition 2. When η = 1, the present model becomes the same as

the original Lucas model analyzed in Benhabib and Peril (1994) for indeterminacy, where the

balanced growth rate can be solved analytically from (30). The constraint in the proposition

with η = 1, under the transversality condition σg∗ + ρ > g∗, generates the same result as

Proposition 1 in their paper. As η ≤ 1 in this case, if σ > γ/(1− β + γ), then the right-hand

side of the inequality is always greater, which is su�cient for a determinate BGP regardless of

the size of η; however, if σ ≤ γ/(1− β + γ), then a small enough output elasticity of human

capital in education (η) is necessary and su�cient for a determinate BGP. As shown in the

Appendix, the su�cient conditions for indeterminacy are:
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Proposition 5. The BGP is indeterminate if

(i) η > 1− g∗

ρ

(
γ

1− β + γ
− σ

)
and

(ii) η ≥ 1− (γ − β)(1− β)

(1− β + γ)
(
σ + ρ

g∗

)
− γ + (γ − β)(1− β)

,

where condition (i) is necessary.

Both constraints for indeterminacy require a large enough output elasticity of human capital

in the education sector. If η = 1 (constant private returns to scale in education), then the

proposition coincides with Proposition 2(i) in Benhabib and Perli (1994). In contrast to this

special situation with η = 1, the proposition implies that indeterminacy is still possible to

emerge when the education sector demonstrates decreasing private returns to scale (η < 1).

For instance, the parametrization ρ = 0.05, σ = 0.3, A = 1, B = 0.046, γ = 0.5, β = 0.33,

g∗ = 0.03 and η = 0.95 can be shown to generate an indeterminate BGP. However, there are

two implicit constraints in the proposition on σ and γ respectively: Condition (i) implies that

σ < γ/(1− β + γ), and condition (ii) implies that γ ≥ β, both because η is no greater than

one (Assumption 1). Therefore, relatively elastic intertemporal substitution is necessary for an

indeterminate BGP, in line with the discussion under Proposition 4. Moreover, in this parameter

region of indeterminacy, a relatively large human capital spillover e�ect is required: γ > β as in

Benhabib and Perli (1994) and Xie (1994), which may be questionable for empirical plausibility.

However, we will see how this constraint loosens in the next case.

4.2 The case α > 0 and η = 1− α

This is the case when physical capital plays a role and private returns to scale are constant in

the education sector. In this case, the existence of a BGP requires a negative externality of

human capital (due to congestion for instance) in the education sector, according to (26):

b(γ) = 1− (1− α)− α1− β + γ

1− β
= − αγ

1− β
< 0 when α > 0.
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The necessary and su�cient condition for determinacy in this case is derived in the Appendix

and given below:

Proposition 6. The BGP is determinate if and only if

η < 1−
(1− β)

(
σ + ρ

g∗

) [ γ
σ − (1− β + γ)

]
(1− β + γ)

(
σ + ρ

g∗

)
− γ

.

This is another corollary of Proposition 2. Again, Proposition 1 of Benhabib and Perli (1994)

can be replicated as a special case of Proposition 6, if we set α = 0 and impose the transversality

condition σg∗ + ρ > g∗ explicitly. Similar to Proposition 4, the BGP is determinate if and

only if the output elasticity of human capital in education is small enough. The condition

σ > γ/(1− β + γ) is also su�cient for determinacy in this case, since then the right-hand side

of the inequality in the proposition is greater than one and thus the inequality is always satis�ed.

The su�cient conditions for indeterminacy are derived in the Appendix and given below:

Proposition 7. The BGP is indeterminate if

(i) η > 1−
(1− β)

(
σ + ρ

g∗

) [ γ
σ − (1− β + γ)

]
(1− β + γ)

(
σ + ρ

g∗

)
− γ

and

(ii) γ ≥ 1− β
1 + α− β

(β − α),

and condition (i) is necessary.

These conditions coincide exactly with those in Proposition 2(i) of Benhabib and Perli (1994),

if we let α = 0 and impose the transversality condition explicitly. However, compared with their

�nding, the more generalized result in the present model relaxes the constraint on the strength of

human capital externalities in production (γ) for indeterminacy, while an additional constraint

on the educational output elasticity of human capital (η) has to be satis�ed, after introducing

physical input in education (α > 0). Similar to Proposition 5, there is one implicit constraint

σ < γ/(1− β + γ), which can be derived from condition (i), where the right-hand side has

to be smaller than one as η ≤ 1. Moreover, σ < γ/(1− β + γ) is actually required for an
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indeterminate BGP, since condition (i) is a necessary condition. This is consistent with the

su�ciency of σ > γ/(1− β + γ) for determinacy shown under Proposition 6.

As illustrated in Figure 4, region I+II is the necessary region for indeterminacy, constrained

by condition (i) alone; while region I is the su�cient region, constrained by conditions (i) and (ii).

For region II, the BGP is either indeterminate or unstable (cannot be inferred by Proposition

7). As the reliance on the strength of human capital externalities for indeterminacy declines,

we can construct an extreme case with little deviations from constant returns to scale in both

production and education, yet we are still able to generate an indeterminate BGP. This �nding

echoes what is found in Mino (2001), that a small deviation from constant returns to scale is able

to generate indeterminacy in an endogenous growth model, where all externalities are positive

and sector-speci�c, and social returns to scale are constant. We have found the same result in

a di�erent model with externalities of average human capital in both production and education

sectors and with decreasing social returns to scale in education.

For instance, if ρ = 0.05, A = 1, B = 0.03, γ = 0.01, β = 0.33, η = 0.68, α = 0.32 and

g∗ = 0.03, then both production and education sectors demonstrate less than 1% human capital

externalities (positive for production but negative for education). However, these parameters can

be shown to satisfy conditions in Proposition 7 and therefore can engender indeterminacy, as long

as σ is small enough. Though the externalities of human capital are tiny in both production and

education sectors, the externalities are essential for indeterminacy: Without these externalities,

indeterminacy could never emerge no matter how elastic intertemporal substitution is (not even

under linear utility).

4.3 The case α > 0 and η < 1− α

Due to the analytical complexity in this case, we present the results with the help of numerical

simulations. Of interest are the e�ects of the human capital spillover in production through γ

and the output elasticity of human capital in education through η on the stability. To focus

on them, we �x the values of ρ, σ, A, β, α, and the balanced growth rate g∗. When we �x

g∗, we vary the total factor productivity in education, B, so that equation (30) holds. There
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are two reasons we come up with this approach: First, in this way, we can avoid solving the

non-polynomial equation (30) in terms of g and dealing with the possible multiplicity of roots;

Second, growth rates are observable, yet not so for the total factor productivity of education.

Elastic intertemporal substitution is assumed (σ < 1), so that there is potential for the emergence

of indeterminacy within the region of permissible values of γ and η.

We present the results in a set of �gures. Figure 5 suggests that the BGP is determinate

for small and intermediate values of γ and η, while indeterminacy emerges when both of them

increase to relatively large values. This is consistent with the �ndings from the two cases in

the previous subsections. Comparing the diagrams for two values of α in Figure 6, it suggests

that, ceteris paribus, a higher output elasticity of physical capital in education, α, loosens the

constraints on both the human capital spillover γ and the output elasticity of human capital in

education η. This is consistent with the intuition that the complementarity between physical

and human capital in education enhances the e�ectiveness of the intersectoral re-allocation,

for constructing alternative converging paths to the BGP. Moreover, Figure 7 recon�rms the

conventional �nding that more elastic intertemporal substitution enhances the emergence of

indeterminacy.

4.4 Di�erent stability properties for multiple BGPs

In the situation with multiple BGPs, we cannot rule out the possibility that they do not share

the same stability properties. It is possible that the low-growth BGP is determinate, while the

high-growth one is indeterminate. However, is the converse possible as well?

Proposition 8. Given that glow < ghigh are two possible balanced growth rates, if the BGP

associated with ghigh is determinate, then the other with glow is also determinate.

See the Appendix for the proof. Therefore, when there are multiple BGPs, it is possible

to have an indeterminate high-growth BGP and a determinate low-growth BGP. However, it is

impossible to have an opposite pair of the BGPs. One numerical example is (shown in Figure

3): glow = 1.95% and ghigh = 7.01% are two possible balanced growth rates for the economy
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under ρ = 0.05, σ = 0.3, A = 1, B = 0.0435, γ = 0.6, β = 0.33, η = 0.8 and α = 0.08.

It can be calculated that the low-growth BGP is determinate while the high-growth BGP is

indeterminate. The existence of such di�ering stability features across BGPs is not speci�c to

this case: It can be calculated that both the examples for multiple BGPs under α = 0 (shown

in Figure 1) and under α + η = 1 (shown in Figure 2) also generate a determinate low-growth

BGP and an indeterminate high-growth BGP.

If we interpret determinacy as relatively stable and indeterminacy as more �uctuating driven

by self-ful�lling expectations, then the economy may experience slower yet more stable growth

or faster yet less stable growth. This is consistent with the growth experiences of Philippine and

South Korea, two countries that were similar in many respects in 1960: South Korea grew faster

with higher volatility than Philippine from 1960 to 2012.

The source for multiple BGPs in the present model hinges on decreasing returns to scale

in education and increasing social returns in production, given elastic enough intertemporal

substitution. The low (high) growth BGP accompanies greater (smaller) shares of human and

physical capital used for production and consequently a higher (lower) ratio of physical capital to

an adjusted indicator for human capital. Therefore, the low-growth BGP bene�ts (su�ers) less

from the increasing (decreasing) returns to scale in production (education) from human capital

externalities than the high-growth BGP. Given that the increasing returns to scale in production

via human capital externalities are the source for indeterminacy on BGPs, it is possible to have

a pair of a determinate low-growth BGP and an indeterminate high-growth BGP, whereas it

is impossible to have a pair of the opposite. Absent these additional factors in the education

sector, the BGP would be unique as in the literature mentioned above.

5 Conclusion

In this paper, we have studied the existence, multiplicity, and indeterminacy of BGPs in an

extended version of the Lucas model, by taking into consideration several plausible factors in

education: physical capital, human capital externalities and decreasing returns to scale. These
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extensions lead to several contributions. First, despite decreasing private or social returns to scale

in education, long run endogenous growth can still be sustainable in the presence of increasing

returns to scale in production via human capital externalities. Also, indeterminacy could emerge

for weaker human capital externalities than found in the literature, which eases the concern

about whether such strong human capital externalities for indeterminacy as in the literature are

plausible. Moreover, multiple BGPs arise under decreasing returns to scale in education and

increasing returns to scale in production, given elastic enough intertemporal substitution. The

high-growth BGP may be indeterminate, whereas the low-growth BGP is determinate, but not

vice versa.

The results may help the understanding of diverse development experiences of nations not

only in the short run but also in the long run for empirically plausible education technologies.

The results may also help explain diverse growth performance in the same country at di�erent

long periods in the absence of fundamental changes. One common requirement of the results

is human capital externalities with which agents in a large population fail to coordinate for

mutually bene�cial actions. One implication of the results is to enhance social coordination for

more investment in human capital for a potential gain in e�ciency even though the returns to

scale are decreasing in education. In the past several decades, emerging economies like Philippine

have generally increased public spending on education relative to GDP (World Bank Data). In

contrast, Japan has reduced the share of GDP for education substantially from 5.2% (a typical

level in developed countries) in 1980 to 3.4% in 2008 (a familiar level in developing countries).

Combining such data with the mechanics of the present model, the switch of growth regimes

among these countries becomes less mysterious.

References

[1] Azariadis, Costas, Been-Lon Chen, Chia-Hui Lu, and Yin-Chi Wang (2013), �A Two-Sector

Model of Endogenous Growth with Leisure Externalities,� Journal of Economic Theory,

148(2):843�57.

24



[2] Basu, Susanto, and John G. Fernald (1997), �Returns to Scale in US Production: Estimates

and Implications,� Journal of Political Economy, 105(2): 249�283.

[3] Benhabib, Jess, and Roberto Perli (1994), �Uniqueness and Indeterminacy: On the Dynam-

ics of Endogenous Growth,� Journal of Economic Theory, 63: 113�142.

[4] Benhabib, Jess, and Roger E.A. Farmer (1999), �Indeterminacy and Sunspots in Macroeco-

nomics,� in: J. Taylor, M. Woodford (Eds.), Handbook of Macroeconomics, North-Holland,

387�448.

[5] Bond, Eric W., Ping Wang, and Chong K. Yip (1996), �A General Two-Sector Model of

Endogenous Growth with Human and Physical Capital: Balanced Growth and Transitional

Dynamics,� Journal of Economic Theory, 68:149�173.

[6] Borjas, George J. (1992), �Ethnic Capital and Intergenerational Mobility,� The Quarterly

Journal of Economics, 107(1): 123�150.

[7] Borjas, George J. (1995), �Ethnicity, Neighborhoods, and Human Capital Externalities,�

The American Economic Review, 85(3): 365�390.

[8] Bowen, Howard R. (1980), The Costs of Higher Education: How Much Do Colleges and

Universities Spend Per Student and How Much Should They Spend? Jossey-Bass Publishers.

[9] Gruber, Jonathan (2006), �A Tax-Based Estimate of the Elasticity of Intertemporal Sub-

stitution,� NBER Working Paper, 11945.

[10] Harris, Richard I. D., and Eunice Lau (1998), �Verdoorn's Law and Increasing Returns

to Scale in the UK Regions, 1968-91: Some New Estimates Based on the Cointegration

Approach,� Oxford Economic Papers, 50: 201�219.

[11] Imai, Susumu, and Michael P. Keane (2004), �Intertemporal Labor Supply and Human

Capital Accumulation,� International Economic Review, 45(2): 601�641.

[12] Jones, John T., and Ron W. Zimmer (2001), �Examining the Impact of Capital on Academic

Achievement,� Economics of Education Review, 20: 577�588.

25



[13] Keane, Michael P., and Kenneth I. Wolpin (2001), �The E�ect of Parental Transfers and

Borrowing Constraints on Educational Attainment,� International Economic Review, 42(4):

1051�1103.

[14] Ladrón-de-Guevara, Antonio, Salvador Ortigueira, and Manuel S. Santos (1997), �Equi-

librium Dynamics in Two-Sector Models of Endogenous Growth,� Journal of Economic

Dynamics and Control, 21(1):115�143.

[15] Ladrón-de-Guevara, Antonio, Salvador Ortigueira, and Manuel S. Santos (1999), �A Two-

Sector Model of Endogenous Growth with Leisure,� Review of Economic Studies, 66:

609�631.

[16] Lucas, Robert E. (1988), �On the Mechanics of Economic Development,� Journal of Mon-

etary Economics, 22: 3�42.

[17] Lucas, Robert E. (1993), �Making a Miracle,� Econometrica, 61(2): 251�272.

[18] Mino, Kazuo (2001), �Indeterminacy and Endogenous Growth with Social Constant Re-

turns,� Journal of Economic Theory, 97: 203�222.

[19] Moretti, Enrico (2004a), �Estimating the Social Return to Higher Education: Evidence from

Longitudinal and Repeated Cross-Sectional Data,� Journal of Econometrics, 121: 175�212.

[20] Moretti, Enrico (2004b), �Workers Education, Spillovers, and Productivity: Evidence from

Plant-Level Production Functions,� The American Economic Review, 94(3): 656�690.

[21] Mulligan, Casey B., and Xavier Sala-i-Martin (1993), �Transitional Dynamics in Two-Sector

Models of Endogenous Growth,� The Quarterly Journal of Economics, 108(3):739�773.

[22] Mulligan, Casey B. (2002), �Capital, Interest, and Aggregate Intertemporal Substitution,�

NBER Working Paper, 9373.

[23] Psacharopoulos, George (1994), �Returns to Investment in Education: A Global Update,�

World Development, 22(9): 1325�1343.

26



[24] Stokey, Nancy L., and Sergio Rebelo (1995), �Growth E�ects of Flat-Rate Taxes,� Journal

of Political Economy, 103(3):519�50.

[25] Trostel, Philip A. (2004), �Returns to Scale in Producing Human Capital from Schooling,�

Oxford Economic Papers, 56: 461�484.

[26] Uzawa, Hirofumi (1965), �Optimum Technical Change in an Aggregative Model of Economic

Growth,� International Economic Review, 6(1):18�31.

[27] Vissing-Jorgensen, Annette, and Orazio P. Attanasio (2003), �Stock-Market Participation,

Intertemporal Substitution, and Risk-Aversion,� The American Economic Review, 93(2):

383�391.

[28] Xie, Danyang (1994), �Divergence in Economic Performance: Transitional Dynamics with

Multiple Equilibria,� Journal of Economic Theory, 63: 97�112.

[29] Young, Allyn A. (1928), �Increasing Returns and Economic Progress,� The Economic Jour-

nal, 38(152): 527�542.

27



Appendix

Proof of Lemma 1

Proof. Equations (38) and (39) lead to

det(J) = J13J21J32 − J23J31 + J21J33 − J11J23J32

=
c∗

k∗
Q−1

{
− αη

1− u∗
1− β

1− β + γ
g∗2 +

[
−(1− β)(η + α) + (η + α)

1− β
σ

× γ

1− β + γ
+

η

1− u∗
1− β
σ

1− β
1− β + γ

(η + α− 1)

]
g∗(σg∗ + ρ)

}
. (42)

Substituting u∗ with the expression in (31), we simplify (42) as

det(J)Q
k∗

c∗
= −

(
1− α− η

σ

)
(1− β + γ)

(
σg∗ + ρ

g∗

)2

+[
γ

σ
− (1− β + γ)

(
α

1− β
+ η + α

)]
σg∗ + ρ

g∗
+

αγ

1− β
, (43)

which determines the sign of det(J) since Q > 0 as shown below (21).

Proof of Proposition 2

Proof. First, det(J) < 0 if θ ∈ Θ1 by Lemma 1, and we will show that conditions (i) and (ii)

are su�cient (but not necessary) for a negative determinant at the steady state. From (43), we

denote z = (σg + ρ)/g and de�ne

f(z) = −
(

1−α−η
σ

)
(1−β+γ)z2+

[
γ

σ
− (1− β + γ)

(
α

1−β
+η+α

)]
z+

αγ

1−β
.

Then, the sign of det(J) is determined by that of f(z∗). If z = 1, then

f(1) = −
(

1−α−η
σ

)
(1−β+γ)+

γ

σ
−(1−β+γ)

(
α

1− β
+ η + α

)
+

αγ

1−β

=
1− σ
σ

(1− β + γ)(α+ η)− 1− β
σ
− α

≤ 0, if σ ≥ 1 or else if η ≤ 1− β + ασ

(1− σ)(1− β + γ)
− α.

Since the graph of f is a parabola that opens downward and f(0) = αγ/(1− β) ≥ 0, f(1) ≤ 0

is su�cient for f(z∗) < 0, as the transversality condition σg∗ + ρ > g∗ implies that z∗ > 1.
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Second, as the determinant of a matrix equals the product of its eigenvalues, it implies that

there are only two possibilities regarding the signs of the eigenvalues: a) all three eigenvalues are

negative; and b) only one of them is negative. We will prove that only the latter is possible, by

considering two cases: In the �rst case, the trace of the Jacobian matrix is non-negative. Since

the trace of a matrix equals the sum of its eigenvalues, it rules out possibility a) that all three

eigenvalues are negative. Therefore, one and only one of the three eigenvalues is negative and

the BGP is determinate.

In the second case, the trace of the Jacobian matrix is negative. To prove the determinacy in

this case, we make use of Theorem 1 in Jess and Benhabib (1994): �The number of eigenvalues

with positive real parts is equal to the number of variations of sign in the scheme

−1, tr(J), −B(J) +
det(J)

tr(J)
, det(J).”

Since the second and the last terms in the scheme above are negative, we have to show that

the third term is positive, to prove that two of the eigenvalues are positive. Note in this case

that det(J)/tr(J) is positive. Then, it su�ces to show that B(J) is non-positive on the BGP

with the omission of asterisks for easy of notations:

B(J) = J21 − J23J32 + J11J33 − J13J31

= (α+ T1 + T2)g
2 +

(
1− β
σ
− αν

β
+ T3 + T4 + T5 + T6 + T7

+ T8 + T9

)
g(σg + ρ) +

(
T10 + T11 −

ν

β

1− β
σ

)
(σg + ρ)2,

where

T1 = Q−1
(
α+

αγ

1− β
− β + γ

)
1− β

1− β + γ

(
η +

αν

u

)
,

T2 = Q−1
η

1− u
1− β

1− β + γ

[
α(ν − u)

u
+ η − 1

]
,

T3 = (β − α)
1

u
Q−1

[
−1− β

σ
(ν − u) +

νu

β

(
η +

αν

u

)]
,
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T4 = (1− u)Q−1
1 + α

β

(α− β)ν[(1− β)u+ βDν] + β(1− β)(u−Dν)

u2
,

T5 = −Q−1
(
η +

αν

u

)
[1− β − (α− β)ν],

T6 = (1− u)Q−1(β − α)
ν

u

(
1− β
β

+
Dν

u

)
, T7 = −T1,

T8 = Q−1
1− β

1− β + γ
η

ν

1− u
,

T9 = −Q−1
(
η +

αν

u

) 1− β
1− β + γ

η

1− u
,

T10 = −(1− β)

β

ν(1− u)

u
Q−1, and

T11 =
(β − α)

β

ν(ν − u)

u

1− β
σ

Q−1.

Recall that Q > 0 below (21). The negative sign of the trace in this case means

tr(J) = J11 + J33 = −(1 + α+ T1 + T2)g +

(
ν − T4

1 + α

)
(σg + ρ) < 0,

where ν − T4/(1 + α) > 1 as shown below:

− T4
1 + α

= −(1− u)Q−1
(α− β)ν[(1− β)u+ βDν] + β(1− β)(u−Dν)

βu2

= −Q−1 ν(1− u)

βu
{(α− β) + β(1−D)[(β − α)ν + 1− β]}

≥ D + (1−D)u

(α− β)(1−D)(1− u)

ν(1− u)

βu

{
(α− β) + β

β − α
β(1− α)

[(β − α)ν + 1− β]

}
=

β − α
β(1− α)(1−D)

(1− ν) > 1− ν,

since β > α under Assumption 2 and 0 < D = α(1 − β)/(βη) < 1 under Assumption 3. Then,

we get α+ T1 + T2 > 0 and thus,

B(J) = (α+ T1 + T2) g
2 +

(
1− β
σ
− αν

β
+ T3 + T4 + T5 + T6 + T7

+ T8 + T9

)
g(σg + ρ) +

(
T10 + T11 −

ν

β

1− β
σ

)
(σg + ρ)2

≤
(
α+ T1 + T2 +

1− β
σ
− αν

β
+ T3 + T4 + T5 + T6 + T7
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+ T8 + T9

)
g(σg + ρ) +

(
T10 + T11 −

ν

β

1− β
σ

)
(σg + ρ)2

=

α− αν

β︸ ︷︷ ︸
Ta

+
1− β
σ

+ T3 + T5︸ ︷︷ ︸
Tb

+ T4 + T6︸ ︷︷ ︸
Tc

+ T2 + T8 + T9︸ ︷︷ ︸
Td

 g(σg + ρ)

+

T10 + T11 −
ν

β

1− β
σ︸ ︷︷ ︸

Te

 (σg + ρ)2.

We analyze the signs of those terms. First, Ta ≡ α− αν/β ≤ 0 as ν/β ≥ 1 by (32) and the

transversality condition. Second, de�ne Tb ≡ (1− β)/σ + T3 + T5 and Te ≡ T11 − ν
β (1− β)/σ,

and by substitution we get:

Tb =
1−β
σ

+(β−α)
1

u
Q−1

[
−1−β

σ
(ν−u)+

νu

β

(
η+

αν

u

)]
−Q−1

(
η +

αν

u

)
[1−β−(α−β)ν]

=

[
1− (β − α)

1

u
Q−1(ν − u)

]
1− β
σ
−Q−1

(
η +

αν

u

)
(1− β)

(
1− β − α

β
ν

)
,

Te = −ν
β

[1− (β − α)
1

u
Q−1(ν − u)]

1− β
σ

.

It can be shown that Te ≤ 0 by (19) and the de�nition of Q, and ν/β ≥ 1 by (32) and the

transversality condition. Then, we have

Tbg(σg + ρ) + Te(σg + ρ)2 ≤ (Tb + Te)g(σg + ρ)

=

{[
1− (β − α)

1

u
Q−1(ν − u)

]
1− β
σ
− ν

β

[
1− (β − α)

1

u
Q−1(ν − u)

]
1− β
σ

−Q−1
(
η +

αν

u

)
(1− β)

(
1− β − α

β
ν

)}
g(σg + ρ)

≤
{[

1− (β − α)
1

u
Q−1(ν − u)

]
1− β
σ
−
[
1− (β − α)

1

u
Q−1(ν − u)

]
1− β
σ

−Q−1
(
η +

αν

u

)
(1− β)

(
1− β − α

β
ν

)}
g(σg + ρ)

=−Q−1
(
η +

αν

u

)
(1− β)

(
1− β − α

β
ν

)
g(σg + ρ) ≤ 0.
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Next, we can also show that Tcg(σg + ρ) + T10(σg + ρ)2 ≤ 0 as follows:

Tcg(σg + ρ) + T10(σg + ρ)2

=

{
(1− u)Q−1

1 + α

β

(α− β)ν[(1− β)u+ βDν] + β(1− β)(u−Dν)

u2

+(1− u)Q−1(β − α)
ν

u

(
1− β
β

+
Dν

u

)}
g(σg + ρ)− (1− β)

β

ν(1− u)

u
Q−1(σg + ρ)2

=

[
−α(β − α)

ν(1− u)

u

(
1− β
β

+
Dν

u

)
Q−1 + (1 + α)(1− β)

(1−D)ν(1− u)

u

·Q−1
]
g(σg + ρ)− (1− β)

β

ν(1− u)

u
Q−1(σg + ρ)2

<

[
−α(β − α)

ν(1− u)

u
(
1− β
β

+
Dν

u
)Q−1 + (1 + α)(1− β)

(1−D)ν(1− u)

u
Q−1

−(1− β)

β

ν(1− u)

u
Q−1

]
g(σg + ρ)

<

[
−α(β − α)

ν(1− u)

u
(
1− β
β

+D) + α(1− β)
(1−D)ν(1− u)

u

]
Q−1g(σg + ρ) ≤ 0,

since the terms in the brackets

[· · · ] = α
ν(1− u)

u

[
−(β − α)

(
1− β
β

+D

)
+ (1− β)(1−D)

]
= αD

ν(1− u)

u
[α+ βη − 1] ≤ 0.

Finally, we show that Td ≤ 0:

Td ≡ T2 + T8 + T9 = Q−1
η

1− u
1− β

1− β + γ
[−α− 1 + ν] ≤ 0,

since Q > 0 as shown below (21). Therefore, we get that B(J) ≤ 0 as

B(J) = (Ta + Tb + Tc + Td)g(σg + ρ) + (T10 + Te)(σg + ρ)2

= Tag(σg + ρ) +
[
Tbg(σg + ρ) + Te(σg + ρ)2

]
+
[
Tcg(σg + ρ) + T10(σg + ρ)2

]
+ Tdg(σg + ρ)

≤ 0 + 0 + 0 + 0 = 0.
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Proof of Proposition 3

Proof. First, det(J) > 0 if θ ∈ Θ2 by the de�nition of Θ2. As the determinant equals the

product of the three eigenvalues, this implies that there are only two possibilities: a) all three

eigenvalues are positive; and b) two of them are negative and the other one is positive. If we

denote the two subsets of Θ2 that generate these two cases by ΘU
2 for case a) and ΘI

2 for case b),

respectively, then the steady state is unstable if θ ∈ ΘU
2 and the steady state is indeterminate if

θ ∈ ΘI
2.

Proof of Proposition 4

Proof. According to Proposition 2, the steady state is determinate if and only if θ ∈ Θ1. The

restriction α = 0 in this case implies:

Θ1 ≡

{
θ ∈ Θ | −1− α− η

σ
(1− β + γ)

(
σg∗ + ρ

g∗

)2

+

[
γ

σ
− (1− β + γ)

(
α

1− β
+ η + α

)]
σg∗ + ρ

g∗
+

αγ

1− β
< 0

}

=

{
θ ∈ Θ | −1− η

σ
(1− β + γ)

σg∗ + ρ

g∗
+
γ

σ
− (1− β + γ)η < 0

}

=

{
θ ∈ Θ | η < 1− g∗

ρ

(
γ

1− β + γ
− σ

)}
.

Proof of Proposition 5

Proof. First of all, we show that det(J) is positive if and only if condition (i) is true. As shown

in the proof of Proposition 4, given α = 0, det(J) shares the same sign as

−1− η
σ

(1− β + γ)
σg∗ + ρ

g∗
+
γ

σ
− (1− β + γ)η,

which is positive if and only if condition (i) is met.
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Next, since a positive det(J) is necessary for an indeterminate steady state, condition (i)

is actually a necessary condition for the indeterminacy. Thus, there are only two possibilities

regarding the signs of the three eigenvalues: a) all three are positive; and b) one is positive

and two are negative. We prove that only the latter is possible, given conditions (ii) in the

proposition, by considering two cases: In the �rst case, the trace of the Jacobian matrix is

non-positive. This rules out the possibility that all three eigenvalues are positive. Therefore,

one and only one of the eigenvalues is positive in this case and the BGP is indeterminate.

In the second case, the trace of the Jacobian matrix is positive. Again to prove the inde-

terminacy in this case, we make use of Theorem 1 in Benhabib and Perli (1994). It su�ces to

prove that B(J) ≤ 0: We can still use the expression of B(J) as in the proof of Proposition 2,

except that α = 0 here:

B(J) = (α+ T1 + T2) g
2 +

(
1− β
σ
− αν

β
+ T3 + T4 + T5 + T6 + T7

+ T8 + T9

)
g(σg + ρ) +

(
T10 + T11 −

ν

β

1− β
σ

)
(σg + ρ)2.

We show that α+ T1 + T2 ≥ 0 as follows:

α+ T1 + T2 = 0 +Q−1(γ − β)
1− β

1− β + γ
η −Q−1 η

1− u∗
1− β

1− β + γ
(1− η)

= Q−1
1− β

1− β + γ
η(γ − β − 1− η

1− u∗
)

≥ 0 if η ≥ 1− (γ − β)(1− u∗).

We can substitute u∗ with the expression in (31) and write this constraint as condition (ii) in

the proposition. The rest of the proof is the same as that of Proposition 2.

Proof of Proposition 6

Proof. According to Proposition 2, the steady state is determinate if and only if θ ∈ Θ1. The

restriction η = 1− α in this case implies:

Θ1 ≡

{
θ ∈ Θ | −1− α− η

σ
(1− β + γ)

(
σg∗ + ρ

g∗

)2

+

[
γ

σ
− (1− β + γ)
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(
α

1− β
+ η + α

)]
σg∗ + ρ

g∗
+

αγ

1− β
< 0

}

=

{
θ ∈ Θ |

[
γ

σ
− (1− β + γ)

(
α

1− β
+ 1

)]
σg∗ + ρ

g∗
+

αγ

1− β
< 0

}

=

{
θ ∈ Θ | η = 1− α < 1− (1− β)(σ + ρ/g∗)[γ/σ − (1− β + γ)]

(1− β + γ)(σ + ρ/g∗)− γ

}
.

Proof of Proposition 7

Proof. First of all, we show that det(J) is positive if and only if condition (i) is true. As shown

in the proof of Proposition 6, given η = 1− α, det(J) shares the same sign as

[
γ

σ
− (1− β + γ)

(
α

1− β
+ 1

)]
σg∗ + ρ

g∗
+

αγ

1− β
,

which is positive if and only if condition (i) is met.

The rest of the proof can follow that of Proposition 5, except the part for B(J) ≤ 0. We can

still use the expression of B(J) as in the proof of Proposition 2, except that η = 1− α here:

B(J) = (α+ T1 + T2) g
2 +

(
1− β
σ
− αν

β
+ T3 + T4 + T5 + T6 + T7

+ T8 + T9

)
g(σg + ρ) +

(
T10 + T11 −

ν

β

1− β
σ

)
(σg + ρ)2.

Condition (ii) in the proposition ensures that T1 ≥ 0. There are two cases regarding the sign

of T2: If T2 ≥ 0, then the derivation in the proof of Proposition 2 can be followed for B(J) ≤ 0;

and if T2 < 0, then the same derivation can still be followed, except the part on T8 and T9. Here

we prove that T8 + T9 ≤ 0 when η = 1− α:

T8 + T9 = Q−1
1− β

1− β + γ
η

ν

1− u
−Q−1

(
η +

αν

u

) 1− β
1− β + γ

η

1− u

= Q−1
1− β

1− β + γ

η

1− u

(
ν − η − αν

u

)
= Q−1

1− β
1− β + γ

η

1− u

(
ν − 1 + α− αν

u

)
The last step made use of ν > u, which can be derived from equation (18).
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Proof of Proposition 8

Proof. If α+ η = 1, from Proposition 6, the high-growth steady state being determinate implies

η < 1−
(1− β)(σ + ρ/ghigh)[γ/σ − (1− β + γ)]

(1− β + γ)(σ + ρ/ghigh)− γ
.

Given σ ≤ γ/(1− β + γ) for multiple steady states, we have

1 −
(1− β)

(
σ + ρ

ghigh

) [ γ
σ − (1− β + γ)

]
(1− β + γ)

(
σ + ρ

ghigh

)
− γ

= 1−
(1− β)

[ γ
σ − (1− β + γ)

]
(1− β + γ)− γ/

(
σ + ρ

ghigh

)
≤ 1−

(1− β)
[ γ
σ − (1− β + γ)

]
(1− β + γ)− γ/

(
σ + ρ

glow

)

= 1−
(1− β)

(
σ + ρ

glow

) [ γ
σ − (1− β + γ)

]
(1− β + γ)

(
σ + ρ

glow

)
− γ

.

Therefore, the low-growth steady state also satis�es the necessary and su�cient condition in

Proposition 6 and is also determinate.

If α+ η < 1, we denote xi = (σgi + ρ)/gi, where i refers to either `high' or `low', and de�ne

f(xi) = −1− α− η
σ

(1− β + γ)x2i +

[
γ

σ
− (1− β + γ)

(
α

1− β
+ η + α

)]
xi +

αγ

1− β
.

From Proposition 2 and the de�nition of Θ1, the high-growth steady state being determinate

implies f(xhigh) < 0. We prove f(xlow) < 0, given f(xhigh) < 0. Note that f(x) is a quadratic

function and its graph is a parabola that opens downward, as −(1 − α − η)(1 − β + γ)/σ < 0.

Since f(0) = αγ/(1 − β) ≥ 0 > f(xhigh), the axis of symmetry should be to the left of xhigh,

implying that f declines on [xhigh, +∞). Also, glow < ghigh means xlow > xhigh since

xlow =
σglow + ρ

glow
= σ +

ρ

glow
> σ +

ρ

ghigh
=
σghigh + ρ

ghigh
= xhigh,

thus f(xlow) < f(xhigh) < 0. Therefore, the low-growth steady state also satis�es the necessary

and su�cient condition in Proposition 2 and is also determinate.
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Figure 1: Multiple steady states under α = 0
We calculate the left-hand and right-hand sides of equation (30), under ρ = 0.07, σ = 0.34,
A = 1.1, B = 0.067, γ = 0.45, β = 0.33, η = 0.98 and α = 0, from which we can �nd that there
are two roots for the equation, between 0 and 0.1.

Figure 2: Multiple steady states under α+ η = 1
We calculate the left-hand and right-hand sides of equation (30), under ρ = 0.045, σ = 0.28,
A = 1.433, B = 0.022, γ = 0.4, β = 0.33, η = 0.68 and α = 0.32, from which we can �nd that
there are two roots for the equation, between 0 and 0.1.
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Figure 3: Multiple steady states under α > 0 and α+ η < 1
We calculate the left-hand and right-hand sides of equation (30), under ρ = 0.05, σ = 0.3, A = 1,
B = 0.0435, γ = 0.6, β = 0.33, η = 0.8 and α = 0.08, from which we can �nd that there are
two roots for the equation, between 0 and 0.1.

Figure 4: Illustration of conditions (i) and (ii) in Proposition 7
We denote the region to the right of both the solid and the dash lines as region I, and the
region to the right of the dash line but to the left of the solid line as region II. Then region I
demonstrates indeterminacy, while region II generates either an indeterminate or an unstable
BGP.
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Figure 5: The e�ect of γ and η on the local stability of the steady state (ρ = 0.05, σ = 0.4, A =
1, β = 0.33, α = 0.05 and g∗ = 0.05)
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